Acta Cryst. (1951). 4, 412

The Crystal Structure of Ludlamite

BY T. ITO AND H. MORI

Mineralogical Institute, Science Department, University of Tokyo, Hongo, Tokyo, Japan

(Received 29 January 1951)

The crystal structure of ludlamite, $Fe_3(PO_4)_2$. $4H_2O$, has been restudied by means of the double Fourier-series method. In the revised structure we may conceive an $Fe_3O_8(H_2O)_6$ group consisting of three octahedra of oxygen atoms and water molecules around an iron atom, joined by sharing the $O-H_2O$ edges. Such groups are linked to each other in the directions of the *a* and *b* axes by phosphorus atoms situated at the centres of oxygen tetrahedra, and in the direction of the *c* axis by the shared water molecules. The difference in cohesive properties of vivianite, $Fe_3(PO_4)_2$. $8H_2O$, and ludlamite is explained in terms of their structures.

Introduction

Recently we have analysed the crystal structure of vivianite, Fe₃(PO₄)₂.8H₂O, and found that in it the H_2O-H_2O bonds, though weak enough to give rise to perfect cleavage across them, are well stabilized on account of the polarized state of the molecules (Mori & Ito, 1950). In ludlamite, whose structure, too, has been worked out (Ito, 1950, p. 168), the bonds responsible for the perfect cleavage appear to be quite different in spite of its similar chemical composition, Fe₃(PO₄)₂.4H₂O (Wolfe, 1949). In order to compare the structures of these closely related minerals and to contribute to our knowledge of the function of water in crystals, we have decided to refine the atomic parameters of ludlamite by means of Fourier analysis. In our original analysis of this structure by the trial-and-error method we may not have attained the same degree of accuracy as in that of vivianite.

Experimental

The crystal constants redetermined on the specimens from Ashio, Japan ($P_2O_5 32.22\%$, $As_2O_5 0.16\%$, $Fe_2O_3 0.66\%$, FeO 50.81%, MgO 0.12%, CaO 0.10%, H₂O 15.77%, total 99.84%; analysis by H. Minato) are as follows:

 $a = 10.45 \pm 0.02$, $b = 4.65 \pm 0.01$, $c = 9.25 \pm 0.02$ A.

(rotation photographs, Mo $K\alpha$ radiation, $\lambda = 0.71$ A.);

$$\beta = 100^{\circ} 30' \pm 10'$$

(Weissenberg photographs, Mo $K\alpha$ radiation, $\lambda = 0.71$ A.).

There are two molecules of $Fe_3(PO_4)_2.4H_2O$ per cell. The specific gravity is 3.01, as measured by H. Minato and by T. Sameshima, compared with the calculated value 3.21. The space group is $C_{2h}^5-P2_1/a$.

We have re-examined the a(0)-, b(0)- and b(1)-Weissenberg-Buerger photographs (Mo $K\alpha$) used in the previous study. The intensities visually estimated were converted into a set of arbitrary numbers ((205)reflexion=1000) from which relative F values were derived by extracting the square roots and multiplying by the polarization, Lorentz and Debye-Waller (B=1) factors. These relative F values were then reduced by multiplying by a proportionality factor (namely 8.80) which made the F values of the strong reflexions (denoted by an asterisk in Table 2) as a whole as near as possible to those calculated. In this way absolute values suitable for Fourier synthesis were obtained. In scaling the intensities we took advantage of the 5:1 intensity ratio of Mo $K\alpha$ and $K\beta$ radiations.

Fourier synthesis

We started the xz synthesis with the atomic parameters given in the previous paper (Ito, 1950, p. 168). Summation was made using the 175 (h0l) terms available and covering the unit cell at 60×60 evaluated points. Though the contour lines first obtained in (010) projection revealed that some of the peaks were somewhat widely displaced from those anticipated by the trialand-error method, we were able, nevertheless, to apply the usual procedure of successive approximation, and obtained in the fifth synthesis a satisfactorily defined electron-density map, from which the final x and zparameters were read off. Further, we carried out the yz synthesis (65 (0kl) terms, 60×60 evaluated points per unit cell) after the y parameters had been so chosen that they, together with the x and z parameters now known, would give as regular a configuration as possible of oxygen atoms and water molecules around phosphorus and iron atoms. As this projection endorsed completely the y parameters thus determined, no further adjustment of atomic positions was necessary. The final parameters are given in Table 1. Table 2

Table 1. Atomic co-ordinates

Atom	No. of equiv. atoms in the unit cell	x a	y/b	z c
Fe,	2	0	0	0
Fen	4	0.170	0.08	0.328
Р	4	0.455	0.96	0.233
Or	4	0.036	0.82	0.198
On	4	0.408	0.19	0.102
0,,,,	4	0.325	0.86	0.290
OTV	4	0.032	0.38	0 ∙36 0
(Ĥ ₂ O) _T	4	0.162	0.27	0.112
$(\mathbf{H_2O})_{\mathbf{II}}$	4	0.332	0.38	0.446

Table 2. Observed and calculated structure amplitudes

hkl	Fo	F _c	hkl	F_{o}	F_{c}	hkl	F	F_{c}
004	10	9	10.0.9		- 6	10.0.2	63	59
005	17	- 15	10,0,10	19	29	10.0.3	16	23
000	34 13	- 8	12.0.0	25	29		28 20	- 22
008	_	3 3	12.0.1	10	- 7	10,0,5	29	25
009*	77	78	12.0.2	25	22	10.0.7		10
0.0.10		_ 9		31	41		25	31
0.0.12	25	- <i>3</i> 30	12,0,4		-9 -10	10.0.10		- 3
0.0.13		12	12.0.6	20	27	10,0,10		- 0
0,0,14	—	- 6	12.0.7		9	12.0.1	21	9
204	13	4	12.0.8		- 3	12.0.2	14	8
205*	124	149	12/0/3		15		24 	- 8
206	13	-12	14.0.0	21	-14	12.0.5	25	-24
207	30 55	- 47	14.0.1		-1		33	46
209	18	21	14.0.3	20 —	52 5	12.0.7	23 22	26
2.0.10		- 7	14,0,4		Õ	12.0.9	21	25
2.0.11	25	25	14.0.5	13	18			
2.0.12	_	- 1	14,0,6		5		25 20	38
2.0.14	23	$2\overline{7}$	204*	96	108	14.0.3	20 14	- 15
4014			205		7	14.0.4		21
401* 409	94 10	88	206	18	- 1	14.0.5	-	9
402		0	207	23 24	31	14,0,6		3
404*	111	93	209		5	013	87	- 91
405	45	39	2.0.10	25	31	014	42	-41
400	13	9	2,0,11		4	015	28	35
408		- 7	2,0,12	24	33	017	18	
409		5	2.0.14	_	1	018	24	25
4.0.10	31	44	401	05	10	019		- 2
4,0,12		-11	401	25 15	- 13	0,1,10	17	- 15
4,0,13	24	30	403	15	23	0,1,12		- 3
600#	100	114	404	12	4			-
600+ 601	108	114 10	405 ▼ 408	110	101	020	65	51
602		6	407	12	15	021	19	-12 -10
603	51	47	408	62	78	023	86	72
604 605	94	- 5			2	024	54	57
606	24 49	20 55	4.0.10	25 25	- 33	025	21	34
607		- 3	4.0.12	14	23	020		34 2
608		-12	4.0.13	14	11	028	_	13
6.0.10	31	42 13	601	_	- 99		31	35
6,0,11	—	- 5	602	17	-23 -17	0.2.10		3 10
6.0.12	—	11	603*	116	112	0,2,12	19	25
800	60	90	604	27	16	001	A 4	• •
801	9	- 38 7	605	58 73	-50 69	031	34 69	-23
802	57	62	607	39	43	033		
803	24	-20	608		-12	034	22	-31
805	63	- 22	800	23	35	035	33	42
806		9	6.0.11			030	44	- 49
807		- 1	6.0.12	25	37	038	17	12
808	22	33	007	00		039		10
8,0,10		4 4	801	60 60	00 45	0,3,10	13	-13
8.0.11	<u> </u>	$2\bar{2}$	803	23	26	0,0/11		14
10.0.0	10	17	804	52	56	040		- 2
10.0.1	19 40	-17 41	805 808	_	-20	041	32	47
10.0.2	23	22	807	55	50	042	21 19	21 `8
10.0.3		3	808	-	5	044	$\bar{28}$	28
10.0.4	23	29	809	30	-26	045	24	25
10.0.6		$-\frac{10}{10}$	8.0.TT	31 18	29 23	046 047		- 6
10.0.7	23	33		20	20	048	19	29
10.0.8		- 5	10.0.T	16	4	049		9
				- · ·				

* See text.

Table 2 (cont.)

hkl	F_{o}	F _c	hkl	F_{o}	F_{c}	hkl	F_{o}	F _c
114	50	- 48	610	_	-13	215	16	22
115	49	36	611	18	-11	216		- 6
116	89	60	619	20	21	217		-12
117	15	19	612	20	- 91	918		15
110	10	12	614	20	- 21	910		10
110	10	1	014	15	- 1	0110		- 4
119	20	28	610	15	10	2,1,10		- 12
1,1,10		- <u>b</u>	616		.0	2,1,11		10
1,1,11	18	23	617		-11			
			618		9	313	39	-42
213	62	-60	619		- 3	314	33	26
214		- 6				315	86	62
215	19	24	710	58	55	316		7
216		-17	711	38	-42	317	21	30
217		15	712	38	28	318	_	19
218		-13	713	61	70	319	19	20
219		-13	714	_	- 3	3.1.10	41	41
21110		15	715	15	21	3.1.11	23	33
9 1 11		5	716	10	16	0,1,111	20	00
2/1/11		0	710		10	411		4
910	477	90	717	96	- /	410	71	- 4
312	4/	32	718	20	30	412	71	- 50
313	19	9	719	19	27	413		1
314	48	48		• •		414		-20
315	19	10	810	30	- 32	415	36	- 35
316		- 9	811		3	416		26
317	55	55	812		0	417		- 2
318	36	39	813	—	- 8	418		2
319	22	-25	814	17	24	419	16	18
3,1,10	22	19	815	—	9	4,1,10	—	1
			816		- 7			
410	81	56	817		12	511		9
411	62	61	818		- 9	512	95	83
412	17	- 8				513	41	25
413	28	24	910		3	514	51	52
414	20	-17	911	36	34	515	65	67
415	20	- 36	019	00	2	516	61	57
416	21	10	012		2	517	95	- 91
417	16	16	014	41	40	517	20	- 21
410	10	10	914	41	49	518		45
410	22	20	910			519	38	40
419		7	916		- 23	5,1,10		8
4,1,10	_	18	917		17			
			_			611	20	31
510	86	58	114	70	70	612	20	-20
511	33	28	115	18	-22	613		-11
512	22	-26	116	64	72	614	23	11
513	67	59	117	53	59	615		- 3
514	64	69	118	39	- 34	616		ĩ
515	47	43	119		9	617		17
516	21	25	1.1.10	50	43	618	28	- 23
517	40	46	1.1.11		3	619		
519		1	1/1/11		0	6.1.10	19	99
510	16	18	917	91	30	0,1,10	10	44
510	10	15	214	21	30			
0,1,10		10	I			i		

compares the observed F values with those calculated on the basis of the revised structure using the atomic fvalues given by Bragg & West (1928) with that for phosphorus derived by interpolation. The value of $R=\Sigma ||F_o|-|F_c|| \div \Sigma |F_o|$ is 0.36 for the 344 reflexions (both present and absent) considered.

The structure originally described is supported in its most essential features by the present revision, although the interpretation of the results has to be considerably modified owing principally to a change in the positions of phosphorus atoms.

The revised structure described

The revised structure of ludlamite, projected on (010) and on a plane normal to the *a* axis, is shown in Fig. 1.

Fig. 2 gives the corresponding Fourier projections of electron density.

The structure consists of octahedra of oxygen and water around iron, and tetrahedra of oxygen around phosphorus. An Fe–O–H₂O octahedron is united with two others each sharing an O–H₂O edge (Fig. 3). This triple octahedral group, Fe₃O₈(H₂O)₆, is in its turn joined to the identical ones in the *a* and *b* directions by phosphorus atoms. In the *c* direction linkage is through water molecules, which are each shared by two of the groups at their extreme octahedral corners. The P–O tetrahedra and Fe–O–H₂O octahedra, it is to be further noted, share only the oxygen corners. In this arrangement the surroundings of oxygen atoms and water molecules are as follows: Each oxygen atom is between one phosphorus and one iron atom, or one phosphorus and two iron atoms, the former oxygen atom being further co-ordinated by one or two water molecules, the latter by one water molecule. Each water molecule is between two iron and one oxygen atoms, with one or

Comparison with vivianite

The structures of vivianite and ludlamite are very similar, the co-ordination of oxygen atoms and water molecules around iron and phosphorus atoms being

Fig. 1. The structure of ludlamite. (a) Projection on (010). Numbers give the height of each atom expressed as a percentage of the b translation (4.65 A.). (b) Projection on a plane perpendicular to the a axis. Numbers give the height of each atom (from $(100)_0$) expressed as a percentage of the a translation (10.45 A.).

Fig. 2. Fourier projections of electron density corresponding to Fig. 1. Contours at intervals of 4 e.A.⁻², the zero-electron lines being broken.

two more oxygen atoms, as the second nearest neighbours, exerting a slight bond towards it. Shortening of the $O-H_2O$ distances which occur along these bonds (as well as that of the shared $O-H_2O$ edges of the Fe- $O-H_2O$ octahedra) may be of some significance. The balance of valency is illustrated in Fig. 4 and the interatomic distances are given in Table 3.

almost identical in shape and character. In vivianite there are separate single and double octahedral groups, $FeO_2(H_2O)_4$ and $Fe_2O_6(H_2O)_4$, and it is phosphorus atoms which unite them to build up a band. Likewise, in ludlamite, we can conceive of the triple octahedral groups that play a similar part in the structure passing into a band bound together by phosphorus. The concept of a band, however, is here rather artificially extended for comparison, for the parallel bands, as described above, are further linked to each other by the shared water molecules and not by such weak bonds as

Fig. 3. The structure of ludlamite shown as linked polyhedra of oxygen atoms, or oxygen atoms and water molecules, around phosphorus and iron atoms, as viewed from a direction nearly parallel to the c axis. Note that $Fe-O-H_2O$ octahedra are joined together to form a triple group, $Fe_3O_3(H_2O)_6$, which is linked to the neighbouring ones in the *a* and *b* directions by phosphorus atoms, situated at the centres of the oxygen tetrahedra, and in the *c* direction by the shared water molecules.

Fig. 4. The electrostatic balance in the structure of ludlamite. Note that some of the lines indicating bonds are referred to atoms above or below the ones designated. The broken line traces the plane on which the bonds presumably break to give rise to the perfect cleavage.

 Table 3. Interatomic distances

Atom	Neighbour	Distance (A.)	Atom	Neighbour	Distance (A.)	Atom	Neighbour	Distance (A.)
Fө _I	${{ m O_{I}^{*}}\left(2 ight)} \ {{ m O_{II}}\left(2 ight)} \ {{ m (H_{2}O)_{I}}\left(2 ight)}$	1·99 2·10 2·17	Or	О ₁₁ О <u>й</u> О ₁₁₁	2.73 2.74 2.64 2.00	О _{ІІІ}	$\begin{array}{c} O_{I\nabla} \\ (H_2O)_{I'} \\ (H_2O)_{II''} \\ (H_2O)_{II''} \end{array}$	2·49 2·87 2·72
Fe _{II}	Of 0111	2.05 2.01 2.04		O_{IV} O_{IV} O_{IV}^{*}	2·59 2·54 3·00		$(H_2O)_{II'''}$ $(H_2O)_{II'''}$	2.65 3.14
	$(\mathrm{H}_{2}\mathrm{O})_{\mathrm{I}}$ $(\mathrm{H}_{2}\mathrm{O})_{\mathrm{II}}$ $(\mathrm{H}_{2}\mathrm{O})_{\mathrm{II}}$	2·18 2·30 2·29		$(H_2O)_I$ $(H_2O)_I$ $(H_2O)_{II'}$	$3.04 \\ 3.21$	0 _{IV}	$(H_2O)_I (H_2O)_{II} (H_2O)_{II'} (H_2O)^*$	2.87 3.05 3.07
Р	O _L	1.61	OII	$O_{III} O_{IV}$	$2.56 \\ 2.53$		$(H_2O)_{II'}$ $(H_2O)_{II''}$	3.07 2.66
	On On	1.60 1.60		$(\mathrm{H_2O})_{\mathrm{I}}$ $(\mathrm{H_2O})_{\mathrm{I'}}$	$2.67 \\ 3.45$	$(H_2O)_I$	$(\mathrm{H_2O})_\mathrm{II}$	3.26
	Oiv	1.51		$({\rm H_2O})_{\rm I}^{*}$ $({\rm H_2O})_{{\rm I}''}$	$2.75 \\ 2.64$	$(H_2O)_{II}$	$(\mathrm{H_2O})_{\mathrm{II'}}$	3.11

Primes denote equivalent atoms and asterisks those in the neighbouring cell.

the H_2O-H_2O bonds in vivianite. The (001) cleavage of ludlamite, which presumably takes place through these water molecules and is a little less perfect than (010) cleavage of vivianite, seems therefore to be due to the mode of linkage of the phosphorus atoms; they exercise attractive forces in the *a* and *b* directions but

References

BRAGG, W. L. & WEST, J. (1928). Z. Krystallogr. 69, 139.
ITO, T. (1950). X-ray Studies on Polymorphism. Tokyo: Maruzen.

MORI, H. & ITO, T. (1950). Acta Cryst. 3, 1.

Wolfe, C. W. (1949). Amer. Min. 34, 94.